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Abstract
Artificial Intelligence and Machine Learning continue to increase in
popularity. As a result, several new approaches to machine learning
education have emerged in recent years. Many existing interactive
techniques utilize text, image, and video data to engage students
with machine learning. However, the use of physiological sensors
formachine learning education activities is significantly unexplored.
This paper presents findings from a study exploring students’ ex-
periences learning basic machine learning concepts while using
physiological sensors to control an interactive game. In particular,
the sensors measured electrical activity generated from students’
arm muscles. Activities featuring physiological sensors produced
similar outcomes when compared to exercises that leveraged im-
age data. While students’ machine learning self-efficacy increased
in both conditions, students seemed more curious about machine
learning after working with the physiological sensor. These results
suggest that PhysioML may provide learning support similar to
traditional ML education approaches while engaging students with
novel interactive physiological sensors. We discuss these findings
and reflect on ways physiological sensors may be used to augment
traditional data types during classroom activities focused on ma-
chine learning.

CCS Concepts
• Applied computing → Interactive learning environments; •
Computing methodologies → Machine learning; • Social and
professional topics → Computing education.
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Physiological Computing, Computer Science Education, Machine
Learning, Muscle Computer Interfaces, Electromyography (EMG)
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1 Introduction
Artificial Intelligence (AI) and Machine Learning (ML) are becom-
ing increasingly prominent in everyday technologies. Users en-
counter increasingly intelligent software when interacting with
social media, digital entertainment, games, online shopping, and
more. However, few people understand the underlying processes
used to develop ML applications. To address this gap, Touretzky
et al. [42] introduced guidelines that discuss what learners should
know about AI and machine learning. Researchers have also dis-
cussed various ways to conduct performance-based assessments for
machine learning concepts [14]. Previous research that builds on
these guidelines and frameworks is primarily dominated by audio,
image, and text data [8]. This reality is likely due to the extensive
availability of learning resources and datasets curated for these
data types. However, emerging technologies such as physiological
sensors offer the exploration of new data types that integrate our
bodies and technology [23]. Furthermore, exploring such sensing
approaches may encourage a type of self-discovery originally intro-
duced by Papert [32] that is often overlooked [9]. To address this
gap, we designed and evaluated PhysioML, a machine-learning ed-
ucation tool that leverages real-time physiological data (i.e., muscle
activity). We explored learners’ perceived understanding, perfor-
mance, self-efficacy, and experience during a user study featuring
74 first- and second-year university students. In particular, we com-
pared PhysioML with the popular Teachable Machine1 tool. Our
results suggest that PhysioML offers outcomes similar to those of
Teachable Machine. However, learners expressed curiosity about
machine learning more during the PhysioML condition.

2 Related Works
ML education research has continued to grow as AI/ML applications
have become increasingly prominent in recent years. In particular,
researchers have explored introducing ML through robotics [2, 20],
1https://teachablemachine.withgoogle.com/
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Figure 1: Outline of activities during PhysioML condition.

body motions [17, 47, 22], conversational agents [43, 21], image
data [36, 44], text data [34], microcontrollers [45, 40], simulations
[6], public datasets [28, 39], drawing [41], and gaming [35].

Several previous studies have expressed the importance of en-
abling students to sample personalized data to build datasets [18].
This is typically done through the collection of sound, image, or
video data [8]. Recent rapid changes in our technological infrastruc-
ture have led to new opportunities to explore connections between
learners’ bodies and sensing technologies [23]. However, limited
work investigates students using their physiological data during ML
learning activities. Physiological sensing involves the measurement
of bio-electrical signals from the body [33, 11]. These signals are
often used to measure activity associated with the brain (Electroen-
cephalogram - EEG), heart (Electrocardiogram - ECG/EKG), and
muscles (Electromyogram - EMG) [12].

Over the past two decades, education-focused studies featur-
ing physiological sensors have primarily used physiological data
to evaluate students’ learning experiences. For example, Yuan et
al. investigated the feasibility of using EEG to evaluate students’
reading comprehension [46]. Researchers have also presented work
that focuses on using physiological sensors to measure learners’
attention levels [25, 7], engagement [24], mental effort [19], anxiety
[38, 13], cognitive load [3, 31], and programming [5].

Other researchers have proposed a different use case scenario
that involves the construction of interactive applications that re-
spond to changing physiological activity. This approach differs
from the evaluation approach in that the physiological sensors are
not intended to measure the learners’ user state for evaluation pur-
poses. Instead, the devices are used to drive interactive applications
similar to peripheral devices such as mice and keyboards.

EEG sensors, which measure electrical activity in the brain, have
been used previously to engage learners in STEM activities [16].
However, recent observations suggest that muscle sensors may be
more intuitive for novice learners [27]. This paper seeks to con-
tribute additional knowledge regarding how physiological sensors
can be leveraged to introduce basic machine learning concepts.
To our knowledge, this is the first study exploring physiological

sensors for ML education. We argue that exploring novel physio-
logical sensor types aligns with 2 core “Big Ideas” in AI [42]: (1)
Computers perceive the world using sensors, and (2) Computers
can learn from data. This paper contributes knowledge related to
these ideas through a user study comparing educational activities
leveraging image and physiological data.

3 PhysioML Tool Design
We developed Physio-ML to explore students’ experiences learning
ML concepts with real-time physiological data. PhysioML consists
of 3 core components: Real-Time Muscle Data, Data Processing,
and the Web Application. The following sections discuss each
core component.

3.1 Real-Time Muscle Data (Electrical Activity)
PhysioML’s significant feature is its support for real-time muscle
data collection via OpenBCI’s Ganglion device. The Ganglion is a
low-cost, open-source biosensing wearable that allows students to
measure and record electrical signals produced by their muscles
in real time (e.g., Electromyography—EMG). It features 4 channels
that sample data at 200Hz per channel. We leveraged Ganglion’s
support for Bluetooth connections to stream real-time muscle data
to the computer.

3.2 Data Processing
Data extracted from the Ganglion device was captured by using
the BrainFlow2 library. PhysioML’s underlying processing pipeline
is informed by previous literature on muscle-computer interfaces
[37]. Once captured, the data was rectified and filtered using the
Scipy3 library. To attenuate high-frequency noise and extract the
low-frequency components relevant to muscle activity, a 4th-order
Butterworth low-pass filter with a cutoff frequency of 3 Hz was ap-
plied to the acquired biosignal. Widely used Python libraries such
as NumPy, Pandas, and Scikit-learn were used to handle model
training and prediction. Linear Discriminant Analysis (LDA) was

2https://brainflow.org/
3https://scipy.org/
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Figure 2: An illustration of a participant using PhysioML to (A) collect/label their muscle data and (B) Use the trained model
that predicts muscle activations to control a game.

leveraged as the default model during training tasks. Communica-
tion between the Python environment and web application were
implemented using Flask4 and SocketIO5.

3.3 Web Application
PhysioML engages students through an interactive web applica-
tion featuring a gamified muscle-computer interface. At its core,
PhysioML is a small web-based game where students control an
on-screen character using their muscles and keyboard input. By
squeezing and resting their fist, students can cause the captured
muscle activity data to change in real time. This feature aligns well
with previous interactive machine learning approaches discussed
in previous literature [48]. In particular, PhysioML steps students
through the process of collecting and labeling muscle data into two
classes: (1) squeezing and (2) resting fist. Afterward, the students
use the PhysioML interface shown in Figure 3 to train and test a
model that predicts the state of the student’s muscle. During Level
4, predictions are mapped to the game character through falling
and jumping actions. As shown in Figure 1, a total of 4 tutorials
and challenge activities were featured in our user study. Students
were required to complete each level before moving forward.

4 Methods
We conducted a user study to explore the students’ experience while
engaging with PhysioML and the Teachable Machine software.
With this study, our team aims to address the following research
questions: RQ1: To what extent do physiological signals affect stu-
dents’ perceived understanding of ML and performance-based
outcomes during ML activities?, RQ2: To what extent does work-
ing with physiological sensors duringML activities impact students’
self-efficacy compared to traditional methods (e.g., images)? and
RQ3: How does using physiological sensors affect students’ user
experience during ML activities compared to traditional methods
(e.g., images)?

4https://flask.palletsprojects.com/
5https://python-socketio.readthedocs.io/

4.1 Participants
The University of Alabama’s Institutional Review Board (IRB) ap-
proved this study before recruitment. A total of 74 first- and second-
year university students were recruited. Most were between 18 and
21 (78%), with age ranges of 22-25 and 31-35 as a far second (8% and
7% respectively). Around 62% of participants identified as male, 31%
as female, 4% as non-binary, and 1% as gender-fluid. Student majors
included Computer Science (62%), Computer Engineering (7%), Ed-
ucational Psychology (7%), Nursing (4%), Mechanical Engineering
(3%), Mathematics (3%) and more.

To understand the participants’ backgrounds in programming
and Machine Learning, they were asked about their skill levels
and basic definitions for each category. Most identified as either
novice (32%) or competent programmers (41%). However, 23% of
participants reported no experience at all in programming, and
only three participants self-reported as experts (4%). Around 25%
of participants said they were not aware of what machine learning
is, 16% were unsure, and 41% said they know what the technology
means. Only 18% of participants reported a definite understanding
of what machine learning entails.

4.2 Study Procedures
After an introductory explanation and ensuring their comfort, par-
ticipants completed a pre-survey which provided non-identifiable
demographic data. The pre-survey was followed by a between-
subjects design with two conditions: image data and physiolog-
ical data (muscle activity). There was a total of 37 participants
per condition. The key difference between each condition is the use
of physiological sensors or image data. Teachable Machine, a state-
of-the-art web-based ML educational tool developed by Google,
was used to support educational ML activities in the image data
condition. During the physiological data condition, students used
our PhysioML software shown in Figure 2 and 3. PhysioML tasks
were similar to tasks completed during the image data condition.
Each session lasted approximately 60 minutes. Participants were
guided through each web app to collect data, label data, and test a
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Figure 3: User interface used to guide students through each
level.

model (using either images or physiological data). Screen record-
ings were captured to facilitate comprehensive data collection. The
study concluded with a post-survey and a short semi-structured
interview.

4.3 Data Collection
This study investigated students’ understanding of machine learn-
ing concepts, self-efficacy, and user experience after each condition.
The data collection methods used to aid our analysis are discussed
in the following sections.

4.3.1 Performance-Based Rubric & Perceived Understanding. Each
session was screen-recorded for post-analysis of students’ under-
standing of machine learning concepts. We utilized a Performance-
Based Rubric [14] to assess participants during each condition.
Furthermore, we surveyed students’ perceived understanding of
concepts such as data collection/processing, model training, classi-
fication/inference, and evaluation.

4.3.2 Self-Efficacy. Self-efficacy scores were collected through the
pre-post surveys, using a previously published questionnaire as a
reference [4]. The modifications made the survey questions specific
to machine learning education applications (ten-point Likert scale).
The self-efficacy scores have a maximum of 100.

4.3.3 Stress. The study explored the stress-related feelings induced
by each condition using the Short Stress State Questionnaire (SSSQ)
[15], a modified version of the Dundee Stress State Questionnaire
[30, 29]. The SSSQ comprises three main categories: distress, en-
gagement, and worry. The survey was condensed from 24 to 11
items to prevent survey fatigue. The item selection process captured
each of the core three components.

4.3.4 Usability. The study assessed usability in each condition
using the System Usability Scale (SUS) [1], a reliable and valid stan-
dardized scale. Participants completed the SUS scale post-survey
following the recommended format and scoring procedures.

4.3.5 Interviews. A short semi-structured interview session was
held after participants had finished their assigned tasks and the post-
survey. The goal was to identify detailed information about their
experiences. The questions were kept broad so as not to introduce
any bias. Participants were asked about their general thoughts on
the system, what they learned, and what they thought about the
data type. Through these interviews, participants provided in-depth
insights into their self-efficacy, knowledge gains or barriers, and
system usability.

4.4 Data Analysis
4.4.1 Quantitative Data. We used R to analyze the quantitative
data. Paired t-tests were used to analyze pre-post self-efficacy sur-
vey responses. Data normality was evaluated through visual inspec-
tion and the Shapiro-Wilk Normality test. Skewness and kurtosis
tests were also used to understand data distribution. Independent
t-tests were used to analyze differences across conditions. In par-
ticular, we utilized post-survey responses to examine differences
in performance, perceived understanding, self-efficacy, and stress
across conditions.

Screen recordings were utilized during data collection, training,
and classification lessons to analyze participants’ performance. A
rubric presented by Von Wangenheim et al. [14] was utilized to
evaluate participants’ performance. The rubric was used to score
artifacts created by participants and was tailored for image classifi-
cation tasks and physiological data tasks.

4.4.2 Qualitative Data. The process of analyzing the qualitative
data began with the transcription of all audio recordings from the
interviews. Once the interviews were converted into text format,
qualitative analysis software (specifically, Atlas.ti) was used for
coding. A content analysis approach was employed, drawing upon
established methodologies [10, 26]. This involved thoroughly re-
viewing the dataset and assigning labels to recurring topics or
themes. The coding process followed a deductive approach to mini-
mize bias. The resulting codes were then abstracted into a list of
concepts and categories, referred to as "themes," which captured par-
ticipant experiences and trends. Additionally, notable quotes were
identified and marked for later reference to highlight significant
remarks.

5 Results
5.1 Survey Results
5.1.1 Perceived Understanding. We found no difference between
the PhysioML and Teachable Machine conditions when evaluating
students’ perceived understanding. Students perceived understand-
ing of data collection and cleaning ("The system helped me better
understand how a model is trained for a machine learning sys-
tem.") which were higher in the PhysioML (M=4.29, SD=0.90) in
comparison to the Teachable Machine (M=3.91, SD=1.21) condition
but not significantly (p>0.05). When analyzing students’ perceived
understanding of model training ("The system helped me better
understand how a model is trained for a machine learning system."),
we observed higher responses in the Teachable Machine (M=4.13,
SD =1.00) condition than in the PhysioML (M=4.05, SD =1.10) condi-
tion. However, this differencewas not significant (p>0.05). Perceived
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Figure 4: Pre-Post analysis of participants’ engagement, distress, and self-efficacy responses.

understanding of classification ("The system helped me better un-
derstand classification in a machine learning system.") during the
PhysioML (M=4.02, SD =0.95) and Teachable Machine (M=4.0, SD
=1.15) condition was also similar (p>0.05). Although insignificant
(p>0.05), we observed higher responses related to students’ per-
ceived understanding of model evaluation ("The system helped me
better understand the evaluation process of a machine learning
system.") during the Teachable Machine (M=4.21, SD=0.75) condi-
tion compared to PhysioML (M=3.94, SD=0.99). We observed higher
responses to students’ overall understanding of the ML process
("The system helped me better understand the creation process of a
machine learning system.") during the PhysioML (M=4.16, SD=1.09)
condition compared to Teachable Machine (M=3.91, SD=1.03). How-
ever, this difference was not significant (p>0.05).

5.1.2 Self-Efficacy. Pre-post surveys were conducted to assess par-
ticipants’ confidence during each condition. Participants initially
reported low mean self-efficacy scores (PhysioML: 47.30, Teachable
Machine: 52.41) but showed significant improvement after using
both applications (PhysioML: 66.24, Teachable Machine: 74.19, p
< 0.001) as shown in Figure 4. There was no significant difference
(p>0.05) found between the post scores of PhysioML and Teachable
Machine.

5.1.3 Stress. Results of the modified SSSQ were used to measure
students’ experience during both conditions. An independent t-
test of post-survey responses did not show differences (p>0.05)
across each condition in engagement (PhysioML: 12.5, Teachable
Machine: 12.3) or distress (PhysioML: 4.19, Teachable Machine:
4.35). Worry scores were significantly lower during the PhysioML
(PhysioML: 3.35, Teachable Machine: 4.11) condition. However, this
may be explained by significantly lower worry scores captured
during the PhysioML (M=3.03) and Teachable Machine (M=3.81)
pre-surveys.

5.1.4 Usability. The post-survey results indicated that both sys-
tems exhibited excellent usability. Teachable Machine achieved an
average scaled score of 84.60, while PhysioML obtained an average
scaled score of 82.50. According to literature, usability scores above
68 are considered above average. Therefore, both systems received
significantly higher ratings than the average usability score.

5.2 Assessment Results
We leveraged a performance-based assessment method proposed
by Wangenheim et. al. [14] to evaluate screen recordings of each
session. In the Teachable Machine condition, participants achieved
an average score of 14.78 out of 22.0 (67.18%). For the PhysioML
condition, the participants’ average score was 14.27 (64.90%). An
independent t-test of scores did not indicate a significant difference
across conditions (p>0.05). However, PhysioML resulted in higher
average scores (p<0.05) for concepts related to "distribution of the
dataset" (PhysioML: 1.51, TeachableMachine: 1.14), "labeling" (Phys-
ioML: 1.69, Teachable Machine: 1.33), and "training" (PhysioML: 1.6,
Teachable Machine: 1.03). Teachable Machine resulted in higher
average scores (p<0.05) linked to "Test with new objects" (PhysioML:
0.00, Teachable Machine: 0.58) and "Data Cleaning" (PhysioML: 0.94,
Teachable Machine: 1.75).

5.3 Themes from Post-Experience Interviews
Codes were developed using the process discussed earlier to rep-
resent the themes that participants repeatedly brought up during
interviews. The following results focus on the final common themes
based on these codes. The most mentioned theme was “ease of
use" with 52 occurrences. This includes any mention of how sim-
ple, fun, or enjoyable their experience was. Another category com-
prises their "curiosity" about the physiological signals with 30
occurrences, which includes mentions of the visualizations and the
usefulness of using human data in real-time. One participant stated:
“I was curious on how that works (the physiological device), like how
it collects the data..."

The experiences appeared to stimulate participants’ critical think-
ing regarding the data and its potential influence on the perfor-
mance of MLmodels. For instance, participants contemplated strate-
gies to enhance the accuracy of their artifacts. Regarding PhysioML,
users engaged in discussions about the impact of body differences,
filters, data volume, and arm positions. The third most prevalent
theme, occurring in 25 instances, was the "utilization of data for
making adjustments or improvements" in the final results of
their application.

The fourth prevalent theme (24 occurrences) involved partic-
ipants expressing their "acquisition of knowledge" regarding
the overall process of creating a complete ML application. They
discussed the three main stages and occasionally provided specific
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details about each stage. During an interview one participant stated:
“I thought that was so much fun, and it’s a great opportunity to learn
more about machine learning and kind of like, really how it works
and the process behind it."

The fifth prevailing theme (24 occurrences) revolved around par-
ticipants expressing their "enjoyment" of the gamified nature of
PhysioML. They appreciated the structured and engaging aspects of
the application, as well as the helpful visualizations that facilitated
the connection between their data and the interactive elements.
Participants also found the game to be beneficial in enhancing their
understanding of the modeling processes, particularly feature ex-
traction. One participant stated: “I really like the process of actually
getting to see how the model is working. When you get to play the
games, you just see the data collection cards and training, whatever,
but then you got to see it in action, and you got to be involved with it,
and I thought that was really cool."

Participants expressed a desire for "more technical details" re-
garding theML systems (21 occurrences). They found their assigned
system to be a good introduction to ML but expressed increased
curiosity about the underlying backend processes. They specifically
mentioned their interest in specific algorithms and visualizations
for the training sections.

6 Discussion
Observations from this study suggest that physiological sensors,
such as EMG, can provide positive hands-on experiences during
educational activities featuring machine learning. Students’ per-
ceived understanding of machine learning and performance was
not significantly different between the physiological sensor and im-
age conditions (RQ1). While image data is commonly used for ML
education, this finding suggests that physiological sensors could
provide similar support for students’ perceived understanding of
ML. Findings related to students’ perceived understanding were
also aligned with self-efficacy responses (RQ2). In particular, pre-
post measures of self-efficacy during the PhysioML and Teachable
machine condition also significantly increase. These results support
the view that physiological sensors could promote positive attitudes
towards ML. Additionally, both PhysioML and Teachable Machine
received higher-than-average usability scores (RQ3).

Overall, students had similar performances across the PhysioML
and Teachable Machine conditions. However, users in both con-
ditions performed very poorly on "Testing with new objects" and
"Adjustments/improvements". As an independent task, Teachable
Machine did not motivate students to continue trying new classes
for improved accuracy. PhysioML had two issues: testing with new
objects was not included as a feature, and the leveling system might
have proven to be a bit long for those looking to improve an ML
model. Though students regularly tried the evaluation mini-game
(level four), they did not start the experience again due to the
required time. Future work might explore improving these motiva-
tional factors to allow students to improve their models since this
skill is necessary for ML and physiological computing. Students also
struggled with data cleaning with the PhysioML condition. This is
likely due to concepts such as digital signal processing (DSP) being
new to students. Additional research on ways to integrate DSP and

ML in educational settings is needed to address this challenge in
the future.

7 Limitations
This study was designed to compare the performance of groups
assigned to two conditions. The approach discussed in this paper
limited the results to provide an overall comparison between par-
ticipants in their respective conditions regarding perceived under-
standing, performance, self-efficacy, stress, and usability. Although
the study’s goal by design was to gather an overview of the partici-
pants’ performances, we recognize the possible threats to validity
that could arise from this methodology.

PhysioML allows novices to begin working with physiological-
based ML applications. Participants showed positive learning out-
comes; however, most participants wanted to delve further into
the topic. Interviews with participants revealed that they were in-
trigued by the technologies and would have liked to learn more
about the model training aspects (21 occurrences). PhysioML is
currently tailored to those with less background knowledge about
ML and physiological computing. As a result, most of the lower-
level technical components are abstracted. Another finding was the
oversimplification of the entire process, which limited users’ ability
to experiment freely. The structure of PhysioML helps novices but
simultaneously constrains more experienced students. Therefore,
the lack of complexity and strict structure can be addressed to im-
prove the system. Future iterations could explore the additions of
detailed training algorithms, provide options for the user to tune
parameters, and manually manage the labels. Overall, PhysioML
provided learning support similar to traditional image-based ML
education.

8 Conclusion
This paper discusses a study exploring the use of physiological
sensors (i.e., EMG - muscle activity) during a machine learning edu-
cation activity. In particular, the physiological sensor approach was
compared to students’ experiences using image data to learn con-
cepts relevant to machine learning. Results from this study suggest
that physiological sensors may support ML education in a manner
similar to image-based approaches. Furthermore, integrating phys-
iological sensors during ML education activities may encourage
students to be more curious about machine learning.
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