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Figure 1: Students designing and testing programs created with PhysioBots.

Abstract

The popularity of applications involving physiological sensing (e.g.,
brain and muscle activity) and robotics has continued to grow in
recent years. However, empirical studies evaluating ways to expose
K-12 students to physiological computing are limited. To address
this gap, we present PhysioBots, an educational tool designed to
introduce K-12 students to physiological computing and robotics.
We evaluated PhysioBots with 27 high school students between
the ages of 15 and 17 to compare the use of physiological (e.g.,
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self-induced changes in brain or muscle activity) and conventional
control (e.g., keyboard) of a robot during a STEM education activ-
ity. Our preliminary results suggest that PhysioBots may improve
students’ self-efficacy and programming confidence. Observations
from open-ended survey questions also indicate that PhysioBots
may support students in exploring ways to gamify emotional state
manipulation. We discuss these findings and offer insights for fu-
ture STEM education work involving physiological sensing and
robotics.

CCS Concepts

« Applied computing — Interactive learning environments; «
Hardware — Neural systems.
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1 Introduction

Human-Computer Interaction researchers have widely studied
wearable sensing technologies in recent years. In particular, sensing
technologies capable of measuring physiological signals [14, 47]
from the body have been explored as a way to support user state
evaluation [36, 47] and assistive technologies [30, 34, 44]. These
signals are often used to measure activity associated with the
brain (Electroencephalogram - EEG), heart (Electrocardiogram -
ECG/EKG), and muscles (Electromyogram - EMG) [15]. Emerg-
ing research exploring ways to use wearable sensing technolo-
gies to support educational activities is becoming more common
[25, 35, 63]. Previous work classified the use of wearable physi-
ologial sensing technologies in educational settings into two cat-
egories: evaluate and enrich [23]. Work in the evaluate category
focuses on using physiological sensing technologies to evaluate
students’ emotional state, physical activity, and other physiological
metrics. Research in the enrich category focuses on using physiolog-
ical sensing technologies to support students’ learning of content
areas such as science, technology, engineering, and mathematics
(STEM). The work discussed in this paper contributes knowledge
relevant to the enrich category. Furthermore, exploring the design
of educational systems that integrate physiological sensing and ro-
botics may assist in exposing more students to physiolgical-based
cyber-physical human systems [42]. This approach may also sup-
port students in developing an interest in disciplines adjacent to
STEM and medical fields. However, there is a lack of knowledge
regarding ways to properly scaffold students with learning these
skills which are typically not introduced until the university level
due to their complexity.
To address the gap, we make two contributions:

e We present PhysioBots, an educational tool designed to intro-
duce K-12 students to physiological computing and robotics.

e We provide the first preliminary study comparing students’
experience constructing physiological (e.g. EEG) and conven-
tional (e.g. keyboard) applications during STEM education
activities.

2 Related Works

Researchers have begun to explore the use of physiological sensing
technologies in educational settings. For example, previous work
has explored the use of physiological sensing technologies to eval-
uate students’ levels of engagement [3, 16, 20, 27, 33, 49, 54, 58, 59].
Previous work has also explored the use of physiological sensors to
assist with self-regulation [4, 6, 51]. Researchers have also begun
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exploring ways to provide hands-on experience with physiologi-
cal sensing technologies in educational settings. In particular, this
‘hands-on’ approach focuses on teaching students how physiologi-
cal sensing technologies work and not simply leveraging the sensor
for evaluation purposes [17, 18, 29, 37]. Previous work in this area
has reported improvements in students’ self-efficacy [23]. However,
there is a lack of knowledge regarding whether this approach can
improve students’ programming confidence, interest in STEM, and
motivation. This study aims to address this gap by evaluating stu-
dents’ responses to questions related to programming confidence
and motivation. Furthermore, previous work in physiological com-
puting education has primarily focused on exposing students to
physiological systems that control virtual objects [24]. However,
traditional physiological computing research has often focused on
using physiological sensing technologies to control physical sys-
tems such as neuroprosthetics [34] and wheelchairs [9]. To address
this gap, we present PhysioBots, an educational tool designed to
introduce K-12 students to integrating physiological computing and
robotics. In particular, PhysioBots supports students with hands-on
experience using physiological sensing technologies (e.g. EEG) to
control a physical robot. Our approach builds on constructionism,
which extends constructivist theory by emphasizing that learning
occurs through active creation and experimentation rather than
passive receipt of knowledge [46]. To our knowledge, this is the
first work featuring technology designed to expose students to inte-
grating physiological sensing and robotics through a blocks-based
programming interface.

While previous work typically featured one or the other, com-
bining physiological sensing and robotics supports students in
gaining hands-on experience designing simple physiological-based
cyber-physical human systems [42]. Furthermore, this approach is
supported by a wealth of previous work that has studied robotics in
educational settings. In particular, researchers have explored the use
of robots as learning companions [7, 10, 19, 26, 32, 43, 57, 61]. Addi-
tionally, previous work has explored leveraging robots to support
students with building skills in areas such as artificial intelligence
[13, 50], robotics [21, 22, 28, 31, 39, 40, 53], computational think-
ing [1, 41, 45, 55], mathematics [2], and cybersecurity [62]. The
work presented in this paper extends previous research in educa-
tional robotics by exploring the integration of physiological sensing
technologies, robotics, and visual programming environments. Fur-
thermore, this paper presents the first preliminary evaluation of
rural K-12 students constructing applications with integrated
physiological sensing and robotics components via a block-
based programming environment.

3 PhysioBots

We developed PhysioBots, a physiological computing education
tool, to give students hands-on experience learning about physiolog-
ical computing and robotics (see Figure 1). The following sections
describe the tool’s key components.

3.1 Real-Time Physiological Data Collection

The PhysioBots system uses the Muse 2 EEG device! to collect
real-time data via a Web BLE connection. The Muse device has

!https://choosemuse.com/
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Figure 2: Example program created by a student that lifts the drone up when the beta frequency band power is above 30.
(Top-Left) Interactive Graph displaying filtered EEG data. (Bottom-Left) Bar graphs of EEG frequency band power. (Right-Pane)

block toolbox, scripting workspace, and menu buttons.

four channels (TP9, AF7, AF8, TP10) [48] and a sampling rate of
220 Hz. The EEG data is band-pass filtered between 0.5 and 30
Hz. Afterward, the data is separated into five different frequency
bands (i.e., delta, theta, alpha, beta, and gamma) using a fast Fourier
transform (FFT) and a modified periodogram with a Hann window.
Band power information was averaged across the four channels to
simplify the interface for novice users and presented as bar graphs
that update in real-time (see Figure 2). Frequency band power pat-
terns are commonly mapped to states such as attention, relaxation,
and drowsiness [38]. The PhysioBots software enables students to
utilize band power data using blocks in the data category. The inter-
face also displayed real-time data from each EEG channel via a line
graph. This aided with explaining basic concepts such as noise and
artifacts common in EEG data. Exercises such as identifying how
the interactive line graph changed when students moved or blinked
their eyes provided hands-on experience with these concepts. The
physiological sensing components, such as acquisition and signal
processing, were implemented using the BCLjs library [56].

3.2 Robot Navigation

PhysioBots enabled students to create simple programs that mapped
physiological changes to drone commands. The interface provided
blocks for basic drone movements, including upward, downward,
forward, and rotational control (clockwise and counterclockwise).
We used the DJI Tello drone with PhysioBots during this study.
However, PhysioBot’s modular design allows for the integration of
additional robotic platforms. The electron.js? framework was used

https://www.electronjs.org/

to create a native application capable of communicating with the
drone via a UDP socket connection.

3.3 Blocks Workspace

The PhysioBots interface allowed students to develop programs by
dragging and dropping pre-defined blocks into a visual workspace.
The workspace featured categories for physiological data, drone
control, and basic programming concepts. Blocks for physiological
data provided real-time data from EEG sensors, while drone control
blocks enabled actions such as moving the drone and rotating it in
specific directions. To create a program, students combined these
blocks, often using conditional statements to trigger drone move-
ments based on changes in physiological signals. For example, a
student could use a block to check if the beta band power exceeded
a threshold and, if so, execute a forward movement command (See
Figure 2). This approach provided a hands-on experience with con-
ditional logic, loops, and event-driven programming. Additionally,
the interface included buttons for connecting to the Muse EEG sen-
sor, starting and stopping the program, and displaying the drone’s
battery status. To our knowledge, this is the first work to imple-
ment physiological data and physical robot control via Blockly® in
a single interface.

4 Method

We conducted a preliminary study to understand the differences
between physiological computing (e.g., EEG) and conventional
control (e.g., keyboard buttons) during STEM education activi-
ties. While previous work has shown that physiological computing

3https://developers.google.com/blockly
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Figure 3: Self-efficacy scores for the physiological (A) and Keyboard (C) conditions. Programming confidence scores for the

physiological (B) and keyboard (D) conditions.

could improve learning outcomes in STEM education activities,
this is the first study comparing the use of physiological comput-
ing to conventional control in an educational context. The follow-
ing research questions guided this study: (RQ1) To what extent
does physiological-based control improve self-efficacy and pro-
gramming confidence compared to conventional control?, (RQ2)
To what extent does physiological-based control impact students’
STEM interest and motivation compared to conventional con-
trol? (RQ3) How does physiological-based control affect students’
user experience during STEM learning compared to conventional
control?

4.1 Study Procedures

University of Alabama’s Institutional Review Board (IRB) approved
this study before data collection. A total of 27 (M=19, F=7, Gen-
der Fluid=1) high school students between the ages of 15 and 17
were recruited. Recruitment was conducted in collaboration with
educators from a local high school.

After providing an introductory presentation regarding the study,
students completed consent forms and provided demographic infor-
mation via a pre-study survey. The pre-survey also included ques-
tions related to students’ self-efficacy and programming confidence.
Afterwards students participated in a between-subject design study
with two conditions: physiological and keyboard-based control.
A total of 15 students participated in the physiological-based con-
trol condition and 12 in the keyboard control condition. Students
were randomly assigned to each condition. The main difference

between the two conditions was how the drone was controlled. Dur-
ing the physiological-based control condition, students developed
programs that moved the drone based on changing frequency band
power data measured by the Muse EEG device. Students developed
programs that moved the drone based on keyboard inputs during
the keyboard control condition. We provided students with a sim-
ple example program before asking them to create a new custom
program during each condition. Students worked in pairs or groups
of 3.

The study lasted approximately 90 minutes. The session be-
gan with a tutorial explaining how to use PhysioBots. Students
were shown how to connect and mount the Muse EEG sensor dur-
ing the physiological-based control condition. Students were also
shown how to connect and control the drone using blocks in the
workspace. Additional concepts such as loops, conditional state-
ments, and event-driven programming were also introduced. A
similar approach was used for the keyboard control condition, with
the exception that students were shown how to control the drones
using blocks mapped to keyboard inputs instead of physiological
data. The study concluded with a post-survey.

4.2 Data Collection

After each condition students’ self-efficacy, programming confi-
dence, and STEM interest and motivation were measured via a
post-study survey. Students also responded to open-ended ques-
tions regarding their experience with PhysioBots. To measure self-
efficacy, a slightly modified version of Compaeau and Higgins
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validated computer self-efficacy scale was used [12]. In particular,
the scale (7-point Likert scale) was made specific to applications
featuring the use of physiological data for control. To better under-
stand students’ programming confidence, we leveraged questions
(7-point Likert scale) that asked students how confident they were
with the following programming concepts: (Q1) Variables, (Q2)
Sequences, (Q3) Logic Structures (IF statements), (Q4) Functions,
(Q5) Lists, and (Q6) Encapsulation. The Intrinsic Motivation In-
ventory instrument was also used to measure interest, competence,
and effort during the post-survey (7-point Likert scale) [52]. Sub-
scales related to interest/enjoyment, perceived competence, and
effort/importance were leveraged to gather insights into how each
condition impacted students. To measure usability, we captured
students’ responses to the System Usability Scale (SUS) after each
condition [8]. We used the recommended format and scoring proce-
dures for this instrument. Open-ended survey questions were used
to gather additional insights into students’ experiences using the
tool. Questions were designed to gauge interesting ideas ("Write
down an interesting thing that you did in your project and how
you made it happen"), difficulty ("What things were hard when
making your project?"), and additional types of data students
would like to use ("If you did this activity again, what other types
of data would you like to use?").

4.3 Data Analysis

R was used to analyze the quantitative data. Visual inspection
and the Shapiro-Wilk normality test were used to check for nor-
mality. Skewness and kurtosis were also used to check for non-
normality. Pre-post survey analysis related to self-efficacy and pro-
gramming confidence were compared using a paired t-test for the
physiological-based control condition. Independent t-tests were
used to compare results between conditions for questions related
to user experience (SUS), interest, and motivation. Self-efficacy and
programming confidence responses were not normally distributed
for the keyboard control condition and were analyzed using a Mann-
Whitney U test. Similarly, self-efficacy and programming confidence
pre-post responses were compared using a Mann-Whitney test for
the keyboard control condition. Analysis of the open-ended survey
questions was guided by Grounded Theory [60]. Recurring topics
and themes were coded using a deductive approach to minimize
bias. The list of codes was translated to themes that captured the
core insights shared by participants.

5 Results

5.1 Self-Efficacy

We did not find a significant difference (p>0.05) in self-efficacy be-
tween the physiological (M=53.6, SD=7.3) and keyboard conditions
(M=49.0, SD:12.6). Furthermore, no significant difference (p>0.05)
was found between the pre (M=41.5, SD=13.6) and post (M=49,
SD=12.6) survey responses for the keyboard condition. However,
we did find a significant difference (p=0.04) in self-efficacy
between the Pre (M=47.4, SD=8.21) and Post (M=53.6, SD=7.22)
survey responses for the physiological condition.
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5.2 Programming Confidence

Pre-post surveys explored changes in students’ programming confi-
dence after using physiological-based control and keyboard control
(see Figure 3). Overall programming confidence was measured us-
ing the mean scores of the 6 questions related to programming
confidence (e.g., variables, sequences, logic structures, functions,
lists, and encapsulation). Significant improvement was found in
overall programming confidence for the physiological con-
dition (Pre(M=21.4, SD=7.3), Post(M=27.4, SD=4.7)). However,
no significant improvement was found in programming confidence
for the keyboard condition (Pre(M=23.5, SD=8.0), Post(M=27.1,
SD=4.3)). Furthermore, no significant difference was found between
the physiological condition (M=27.4, SD=4.7) and the keyboard con-
dition (M=27.1, SD=4.3). When evaluating the 6 questions related
to programming confidence individually, we found that the phys-
iological condition led to significant improvement in pro-
gramming confidence for the following questions: Variables
(Pre(M=3.6, SD=1.45), Post(M=5.0, SD=1.41), p=0.012), Lists
(Pre(M=3.4, SD=1.63), Post(M=4.66, SD=1.04), p=0.018), and
Encapsulation (Pre(M=2.33, SD=1.49), Pre(M=3.53, SD=1.40),
p=0.026). Analysis of the 6 programming confidence questions for
the keyboard condition did not reveal any significant improvement
(p>0.05).

5.3 Interest, Motivation, and Usability

We did not find a difference (p>0.05) in interest/enjoyment be-
tween the physiological (M=6.02, SD=0.96) and keyboard conditions
(M=6.15, SD=0.68). Furthermore, no significant difference (p>0.05)
was found in perceived competence between the physiological
(M=5.36, SD=0.98) and keyboard condition (M=5.92, SD=0.8). Simi-
larly, no significant difference (p>0.05) was found in effort/importance
between the physiological condition (M=5.15, SD=1.18) and key-
board condition (M=5.5, SD=1.41). We did not find a significant
difference (p>0.05) in usability between the physiological (M=80.0,
SD=16.8) and keyboard conditions (M=85.2, SD=18.6). Previous re-
search suggest that usability scores above 68 are considered above
average. This indicates that both conditions were rated higher than
average.

5.4 Open-Ended Question Themes

Interesting Ideas. The most recurring theme during the physiological-
based control condition was students exploring gamification of
emotional state manipulation. For example, one participant re-
sponded: "Me and my partner decided to attempt at guessing the
variable needed to control the craft, though he found a bypass by just
thinking very hard.". Another participant responded: "One interest-
ing thing that I did was make the drone go up very high, I made it
happen by thinking of something that made me very angry". During
the keyboard condition, the most recurring theme was students
exploring navigation. One participant stated: "We made the drone
go very high by changing [the code] and pressing the down button on
our keyboard." Other groups created challenge tasks using the ob-
stacles in the classroom environment. For example, one participant
responded: "I made the drone land on a bench and table."
Difficulty. The most common theme related to difficulty in the
physiological condition was related to perceived self-regulation
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challenges. One participant responded that the following was some-
thing they found hard: "Trying to stay focus to get the drone in the
air". Another participant responded: "A hard thing was getting a
brainwave within a certain threshold to activate something while
testing the code”. While most participants did not report any difficul-
ties during the keyboard condition (9 out of 15 participants), some
reported issues related to hardware challenges. One participant
stated: "I crashed the drone and lost the propeller". Another partici-
pant stated: "Trying to control the robot because of the low battery
percentage".

Additional Data Types. Several responses to the question re-
lated to additional data types were related to a desire to use data
related to movement. One participant stated: "Using like energy by
running around or moving instead of sitting down". An additional
notable response was the use of voice control.

6 Discussion and Conclusion

In this paper, we presented PhysioBots, an educational tool for
introducing students to physiological computing and robotics. Our
preliminary evaluation suggests PhysioBots may improve students’
self-efficacy and programming confidence. These findings align
with previous work relevant to physiological computing educa-
tion [23]. While these results are promising, additional longitudinal
studies are needed to understand if these attitudinal changes lead
to improved performance and understanding. We did not observe
differences in students’ self-efficacy, programming confidence, in-
terest, or motivation levels when comparing physiological and
keyboard-based control. We plan to conduct future studies with a
larger sample size to confirm findings from this preliminary study.
While the keyboard condition was selected due to current technolog-
ical constraints, future work should explore whether similar results
are observed when including a joystick or mobile app for drone
control. Robotics topics were restricted to robot navigation during
this study due to time constraints. Future work should explore in-
troducing topics related to robot perception alongside physiological
sensing.

Analysis of the open-ended survey questions suggests that stu-
dents found it interesting to gamify emotional state manipulation.
This suggests that students may respond positively to educational
activities designed to improve STEM and self-regulation skills. Pre-
vious work has observed promising results with similar approaches
to self-regulation in educational contexts [4, 5, 11]. However, addi-
tional validation related to PhysioBot’s support of self-regulation
is needed since this was not the focus of the study. Students sug-
gested that additional data types related to movement and voice
control would be interesting to use with PhysioBots. This observa-
tion aligns with previous work involving sensor-based education
tools [64, 65]. Furthermore, the use of sensors such as EMG that
measure muscle activity may address concerns related to the self-
regulaton challenges and signal-to-noise ratio limitations of EEG.
In some instances, students intentionally introduced noise in the
EEG signals by clenching their jaws or activating other muscles.
While this is undesired in traditional EEG studies, we used this as
a learning opportunity to demonstrate the limitations of current
physiological sensor technologies.
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During the keyboard condition, students’ responses focused on
the hardware challenges of the drone. However, during the physio-
logical condition, students’ responses focused more on manipulat-
ing their emotional state. This observation suggests that PhysioBots
may be best suited for an interdisciplinary curriculum that com-
bines physiology, computing, and robotics knowledge. In cases
where educators are solely focused on traditional STEM education,
PhysioBots may be best used as a supplementary tool for increased
engagement and confidence.
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