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Figure 1: Students building simple apps that leverage physiological data

Abstract
Physiological sensing technologies are becoming increasingly ac-
cessible, prompting educators and researchers to explore hands-on
approaches for introducing K–12 students to physiological comput-
ing. While prior efforts have engaged students using sensor-based
activities, few empirical studies have examined how outcomes differ
between using real-time physiological hardware and pre-recorded
biosignal data. This paper presents findings from a study in which
students engaged in two sets of activities: one activity using a
consumer-grade hardware physiological sensor (i.e., OpenBCI Gan-
glion) and the other using pre-recorded physiological data (i.e. mus-
cle activity) to build simple applications. Our observations revealed
similar outcomes and student engagement across both approaches.
Notably, students reported increases in self-efficacy and confidence
regardless of whether they worked with real-time or pre-recorded
data. These findings suggest that hardware-free implementations
may offer similar benefits when teaching time-series data and signal
processing concepts. We discuss the implications of these findings
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and reflect on the benefits and constraints of incorporating physio-
logical sensors in high school computing classrooms.
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1 Introduction
Sensor-based technologies are becoming increasingly ubiquitous,
with examples found in homes, vehicles, and a wide range of com-
mercial settings. In recent years, wearable devices capable of mea-
suring physiological data have also gained popularity, appearing
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in smartwatches1, glasses2, and earphones3. As physiological sens-
ing becomes more integrated into everyday life, there’s a growing
need to help young people engage with the technology not just as
consumers, but as creators.

Researchers have recently explored various approaches to ad-
dressing this gap by designing tools that offer students hands-on
experience with physiological sensing technologies [15, 18]. Educa-
tional tools have commonly focused on data from the brain (elec-
troencephalogram – EEG), heart (electrocardiogram – ECG/EKG),
and muscles (electromyogram – EMG) [12]. Prior relevant work has
primarily examined how students engage with tools that use real-
time physiological sensor data to develop applications or games
that respond to changes in physiological state [19, 26]. However,
there is limited research comparing the use of real-time data with
pre-recorded physiological data in educational contexts.

To address this gap, we present a preliminary study that com-
pares students’ experiences in STEM activities using real-time
(sensor-based) versus pre-recorded (non-sensor-based) physiologi-
cal data.

2 Related Works
Over the past several decades, researchers have investigated various
ways to integrate physiological sensing into educational contexts.
One of the earliest approaches involved using physiological data
to assess students’ cognitive states during learning activities. For
instance, prior studies have examined how physiological signals
can be used to measure student engagement [1, 13, 17, 22, 29, 38,
44, 46, 47] and self-regulation [2, 3, 40]. In contrast, more recent
research has focused on using physiological sensors to support
hands-on learning experiences [19, 34].

Previous research suggests that engaging with authentic sen-
sor data experiences [28] can enhance students’ data literacy. As
skills related to artificial intelligence, machine learning, and intelli-
gent sensing grow increasingly important, understanding founda-
tional concepts such as data preprocessing becomes even more crit-
ical. Several studies have examined how students engage with pre-
recorded data in data science activities. For example, researchers
have used pre-recorded environmental data [30, 39], fitness data
[7, 32, 33], geological data [27], audio [11, 35] and simulation out-
puts [36, 37] to introduce key data science concepts. Researchers
have also investigated the use of sensor-generated data in educa-
tional activities. This work spans a range of topics, including biol-
ogy [20, 21], physiology [19, 34], sports [23, 31, 48], dance [5, 24],
e-textiles [25], mobile computing [10], and data from physical envi-
ronments [6, 14, 16, 41, 45].

Despite these advances, few studies have directly compared how
students engage with real-time sensor data versus pre-recorded
physiological data in educational programming contexts. This is a
critical gap, especially for educators who must weigh cost, acces-
sibility, and learning outcomes when deciding whether to include
physical hardware in the classroom. To address this gap, this study
compared the experiences of K-12 students during real-time and

1https://www.fitbit.com
2https://www.ray-ban.com/usa/ray-ban-meta-ai-glasses
3https://www.emotiv.com/products/mn8

non-real-time physiological computing activities using a block-
based programming interface. We contribute preliminary insights
on how each modality affects students’ self-efficacy, programming
confidence, and motivation. Additionally, this work extends our
current understanding of students’ general responses to creating
programs that leverage muscle activity data.

3 Methods
We conducted a user study to examine students’ experiences with
sensor-based and non-sensor-based approaches to learning pro-
gramming and physiological computing. This study aims to address
the following research questions. (RQ1): To what extent does work-
ing with physiological-sensors affect student’s self-efficacy com-
pared to non-sensor approaches? (RQ2): To what extent does
working with physiological-sensors affect student’s program-
ming confidence compared to non-sensor approaches? (RQ3):
What is the impact of using physiological sensors on students’
motivation compared to a non-sensor-based method?

3.1 Study Procedures
The X Institutional Review Board (IRB) approved this study before
recruitment. Our group worked with local high school educators
to explore our research questions. A total of 37 students (M=17,
F=19, gender fluid=1) participated in the studies. Participants had
an average age of 16.3 years (SD = 0.83), ranging from 15 to 18 years
old. We employed a within-subjects design and counterbalanced
the condition order to mitigate potential order effects. Participants
engaged in two activity conditions: (1) a non-sensor condition
utilizing pre-recorded physiological data and (2) a sensor-based
condition involving real-time data collection (Figure 1). Each session
began with a pre-survey and a brief overview of the corresponding
activity. The primary distinction between the two conditions was
whether students worked with live physiological signals captured
via sensors or analyzed previously recorded data.

3.1.1 Non-Sensor Condition (External and Pre-recorded Data). Dur-
ing the non-sensor condition, students interacted with a custom ap-
plication featuring an interactive visual programming environment
designed to support educational activities using pre-recorded physi-
ological data (Figure 2). The applicationwas inspired by block-based
programming tools such as Scratch and Snap. A central feature of
the environment was the data block category, which allowed stu-
dents to experiment with common signal processing techniques,
including mean removal, absolute value computation, and band-
pass filtering (Figure 3). These operations are frequently used in the
analysis of time-series data such as audio and physiological signals.
The environment also included a get signal block that provided
access to pre-recorded electromyography (EMG) data reflecting
variations in arm muscle activity. To support data exploration, a
plot block was included to dynamically update an interactive graph.
In addition to supporting pre-recorded physiological data, the tool
used in this condition also featured external data integrations, in-
cluding links to music (Spotify Charts), sports (ScoreStream), and
weather (Weather.gov). These additions were informed by initial
student feedback and aimed to increase engagement by incorporat-
ing familiar, real-world data sources. Students learned to capture
and visualize data from these sources using blocks such as create
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Figure 2: Example program created by student that plots different list data. (A) Interactive Graph (B) External Data Links (C)
Block Toolbox (D) Scripting Pane (E) Action Buttons. (Non-Sensor)

list with, set variable, and plot. The activity began with students
plotting simple, custom datasets derived from the external sources.
Following this, they completed an exercise focused on visualizing
and processing raw EMG data. This session lasted approximately
60 minutes.

3.1.2 Sensor Condition (Real-Time Data). To compare sensor-based
and non-sensor-based approaches, we developed a custom tool that
provided students with hands-on experience using physiological
sensors (Figure 4). This tool was designed to closely mirror the appli-
cation used in the non-sensor condition, with key enhancements to
support real-time sensor interaction. Specifically, the sensor-based
tool included: (1) a real-time data block that updates in real-time
with electromyography (EMG) muscle activity data, (2) a game
environment featuring a character, obstacles, and collectibles, (3)
real-time visual signal feedback, and (4) a menu option to es-
tablish a Bluetooth connection between the sensor device and
a computer. To reduce potential confounding variables, all other
design elements were kept consistent with the non-sensor version.

Real-time functionality was implemented using the Web Blue-
tooth API4. We used OpenBCI’s Ganglion device to capture real-
time EMG data5. Incoming EMG signals were rectified and filtered
using standard procedures from prior work on muscle-computer
interfaces, including a 4th-order Butterworth low-pass filter with a
3 Hz cutoff frequency [43]. During the sensor-based activity, stu-
dents were guided through exercises in which they built simple
interactive games that allowed them to control a character using
muscle activity from their arms. Each session lasted approximately
60 minutes.

4https://developer.mozilla.org/en-US/docs/Web/API/Web_Bluetooth_API
5https://shop.openbci.com/products/biosensing-starter-bundle

3.2 Data Collection
This study examined students’ self-efficacy, programming con-
fidence, motivation, and user experience following each con-
dition. To support our analysis, we employed the following data
collection methods.

3.2.1 Self-Efficacy. Self-efficacy scores were collected using pre-
and post-surveys based on a previously validated questionnaire [8],
with modifications to tailor the items specifically to physiological
computing technologies. Responses were measured on a seven-
point Likert scale.

3.2.2 Programming Confidence. The programming confidence ques-
tions ask students how confident they were with various program-
ming concepts such as (Q1) variables, (Q2) sequence, (Q3) logic
structures (IF), (Q4) methods, (Q5) lists, and (Q6) encapsulation.
Responses were measured on a seven-point Likert scale.

3.2.3 Motivation. The Intrinsic Motivation Inventory instrument
was used to measure interest, competence, and effort [42]. This
measure was only collected during the post-survey. We used the
Intrinsic Motivation Inventory instrument to measure interest (Q1-
Q7), competence (Q8-Q13), and effort/importance (Q14-Q18).

3.2.4 Usability. Usability for each condition was assessed using
the System Usability Scale (SUS) [4], a widely used and validated
standardized instrument. Participants completed the SUS as part of
the post-survey, following the recommended format and scoring
guidelines.

3.2.5 Open-EndedQuestions. Open-ended survey questions were
included to gain deeper insights into students’ experiences with
each condition. These questions were designed to elicit reflections
on both the creative aspects and challenges of the activities. For
example, students were asked to describe what they perceived to be
an interesting aspect of their project and how they implemented it
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Figure 3: (A) Plotting raw pre-recorded EMG signal (B) Using data blocks to process raw EMG data. (Non-Sensor/Pre-Recorded)

Figure 4: (Real-Time Sensor) Example program created by a student that makes a character jump when the arm muscle is
activated. (A) Game Feedback (B) Visual signal feedback. (C) Block Toolbox (D) Scripting Pane (E) Action Buttons. (F) Signal
zoom controls.

(“Write down an interesting thing that you did in your project and
how you made it happen”), as well as to identify any challenges
they encountered (“What things were hard when making your
project?”).

3.3 Data Analysis
3.3.1 Quantitative Data. All quantitative data were analyzed using
R. The Wilcoxon signed-rank test was used to evaluate changes
in self-efficacy scores between pre- and post-surveys, as well as to
compare responses between the sensor and non-sensor conditions.
Data normality was assessed using both visual inspection and the
Shapiro-Wilk test. Additionally, skewness and kurtosis statistics
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Figure 5: Self-efficacy scores for the Sensor (A) and Non-Sensor (B) conditions. Programming confidence scores for the Sensor
(C) and Non-Sensor (D) conditions.

were examined to further evaluate the distributional characteristics
of the data.

3.3.2 Qualitative Data. Analysis of the open-ended survey responses
was informed by Grounded Theory [9]. A deductive coding ap-
proach was used to identify recurring topics and themes, helping
to reduce potential bias during interpretation. The resulting codes
were organized into broader thematic categories that reflected the
core insights shared by participants.

4 Results
4.1 Self-Efficacy
We did not find a significant difference (p>0.05) in self-efficacy
between the non-sensor (M = 52.84, SD = 9.9) and sensor (M =
52.8, SD = 7.6) conditions (Figure 5). However, we did observe
a significant difference in self-efficacy between the pre and
post-survey responses for both the sensor (Pre(M = 46.2, SD
= 9.7), Post(M = 52.8, SD = 7.6), p = 0.034) and non-sensor
condition (Pre(M = 48.2, SD = 9.3), Post(M = 52.84, SD = 9.9), p
= 0.046).

4.2 Programming Confidence
Surveys administered during the study assessed changes in students’
programming confidence. Overall confidence was calculated as the
average score across six items targeting core programming concepts,

Figure 6: Physiological Computing Self-Efficacy (Non-Sensor
v. Sensor)

including variables, sequences, logic structures, functions, lists, and
encapsulation. We did not find a significant difference (p>0.05) in
programming confidence between the non-sensor (M = 30.6, SD =
5.8) and sensor (M = 31.1, SD = 6.8) conditions.
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4.3 Interest, Motivation, and Usability
We did not find a significant difference (p>0.05) in interest between
the sensor (M = 43.7, SD = 6.05) and non-sensor (M = 41.4, SD = 7.2)
conditions (Figure 6). Furthermore, no differences were observed in
competence (Sensor(M = 34.8, SD = 5.2), Non-Sensor(M = 33.9, SD =
7.7)) or effort/importance (Sensor(M = 26.4, SD = 5.5), Non-Sensor(M
= 26.7, SD = 6.15)). No significant difference (p>0.05) in usability was
found between the sensor condition (M = 80.0, SD = 16.8) and the
non-sensor condition (M = 75, SD = 22.1). Prior research suggests
that SUS scores above 68 are considered above average, indicating
that both conditions were rated as having above-average usability.

4.4 Open-Ended Question Themes
4.4.1 Interesting Ideas. During the sensor-based condition, the
most recurring theme was students exploring how real-time mus-
cle activity could control game elements, particularly character
movement. For example, one participant shared: “using my muscle
energy to make things jump and run.” Another noted: “one thing
that was interesting to me was controlling the character by the grip
of your hand.” These responses reflect students’ interest in how
physiological input could influence on-screen actions. In contrast,
during the non-sensor condition, students frequently explored the
use of real-world data sources and variables to drive visualization.
One student explained: “I like how you could make as many dif-
ferent variables as you liked.” Another wrote: “Made a list of the
scores from our basketball teams games.” These reflections high-
light how students found meaning in using external datasets to
create interactive, data-driven visualizations.

4.4.2 Challenges. In the sensor-based condition, the most common
theme related to difficulty centered on controlling and interpreting
muscle signals. For example, one participant shared: “Trying to get
a range of energy to accurately make it jump, move, and stop at the
right times.” Another noted challenges with physical setup, stating:
“Figuring out the correct placement of the wires. I put right colors in
the correct area, but I think it could be more specified.” In contrast,
challenges during the non-sensor condition were primarily related
to understanding programming concepts and using block-based
tools. One participant remarked: “Understanding which variable to
use” was hard, while another commented: “Getting used to adding
new blocks.” These responses reflect how each condition introduced
distinct cognitive and technical challenges.

5 Discussions
Observations from this study suggest that both sensor-based and
non-sensor-based activities can offer positive hands-on experiences
in educational settings. Specifically, no significant differences in
self-efficacy were observed between the sensor and non-sensor
conditions (RQ1). While prior research has highlighted the benefits
of using physical sensors to enhance hands-on learning experiences
[19, 34], these findings indicate that non-sensor approaches may
have comparable effects on students’ self-efficacy.

Findings related to programming confidence (RQ2) suggest min-
imal differences between sensor-based and non-sensor-based ap-
proaches. This may indicate that, when designed effectively, ac-
tivities using pre-recorded sensor data can support programming

confidence in ways comparable to real-time sensor interactions.
However, further research with larger sample sizes and a broader
range of sensor types is needed to validate this observation. Ad-
ditionally, students reported similar levels of interest, motivation
(RQ3), and usability across both conditions, further reinforcing
the observed similarities between the sensor and non-sensor ap-
proaches.

When asked about aspects they found interesting, students in the
sensor-based condition often highlighted the interactive elements
of the activity. In contrast, responses in the non-sensor condition
focused more on programming concepts such as the use of variables
and lists. Students also more frequently commented on plotting
and data visualization features during the non-sensor condition.
These findings suggest that sensor-based approaches may be most
effective when the goal is to emphasize interactivity. Conversely,
non-sensor approaches may be more suitable when the focus is on
reinforcing fundamental programming concepts.

Additional research is needed to better understand the differ-
ences between sensor-based and non-sensor-based approaches.
While the goal of this study was to provide a preliminary eval-
uation of both methods, we acknowledge several potential threats
to validity. In particular, future studies should examine whether
similar findings emerge when incorporating a wider range of sensor
types and larger sample sizes. Further studies should also explore
whether similarities are also observed when using tools that feature
text-based programming instead of block-based programming.

6 Conclusion
This paper presents a preliminary study examining both sensor-
based and non-sensor-based approaches for engaging students with
physiological sensing. Findings suggest that students had compa-
rable experiences across both conditions. While the sensor-based
activities appeared to promote interest through interactive features,
the non-sensor activities encouraged greater focus on fundamental
programming concepts. Further research is needed to determine
whether these patterns hold when using different types of sensors
and tools.
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